A New Member of the Metal-Porphyrin Frameworks Family: Structure, Physicochemical Properties, Hydrogen and Carbon Dioxide Adsorption

ChemistryOpen. 2024 Feb;13(2):e202300100. doi: 10.1002/open.202300100. Epub 2023 Nov 9.

Abstract

A novel holmium-based porous metal-porphyrin framework, {(H3 O+ )[Ho(H2 TPPS)]- ⋅ 4H2 O}n (denoted as UPJS-17), was synthesised by hydrothermal reaction. Structural analysis reveals, that UPJS-17 has a three-dimensional open framework. The framework is negatively charged and the negative charge is compensated by hydronium cation. The compound showed no N2 adsorption but the Ar, CO2 and H2 . From the argon adsorption, the surface area of ~150 m2 g-1 was determined. Carbon dioxide adsorption was measured at various temperatures (0, 10, 20, 30 and 40 °C) and the compound showed the highest adsorption capacity (at 0 °C) of 7.0 wt % of CO2 . From the carbon dioxide adsorption isotherms the isosteric heat of 56,5 kJ mol-1 was determined. Hydrogen adsorption was studied at -196 °C with hydrogen uptake of 2.1 wt % at 1 bar.

Keywords: carbon dioxide adsorption; hydrogen adsorption; isosteric heats; metal-organic frameworks; metal-porphyrin frameworks.