Influence of the cationic degree and molar mass of modified starches on their physicochemical properties and capability to enhance the oil recovery process

Carbohydr Polym. 2024 Jan 1:323:121388. doi: 10.1016/j.carbpol.2023.121388. Epub 2023 Sep 13.

Abstract

Polysaccharides and their derivatives are used as additives in numerous petroleum industrial processes, especially in enhanced oil recovery (EOR). There exists however, a lack of studies concerning how their physicochemical properties affect the oil recovery process. This work presents an investigation of a series of 2-hydroxy-3-(trimethylammonium)propyl starches (HTPS) with different molar masses and cationic degrees that are potentially useful for EOR. It was investigated surface/interfacial tensions, rheological profile, emulsion index and wettability alteration. The results provide experimental evidence that the HTPS intrinsic properties affect the measured properties. The HTPS solution/oil interfacial tension (IFT) ranged from a low value of 19.0 to a high value of 34.0 mN/m and correlates positively with the molar mass of the HTPS. In contrast, the rheological behavior displays correlations with the molar mass and the degree of cationization. Furthermore, the 1 % HTPS solutions presented around 10 % of viscosity increase in comparison to brines typically used in waterflooding. The derivative with a higher molar mass and intermediate degree of cationization (HTPS 2) was more effective in changing the wetting condition of an aged limestone with a wettability alteration index (WAI) of 52 % while the commercial surfactant cetyltrimethylammonium bromide (CTAB) presented a WAI of 32.6 %.

Keywords: 2-hydroxy-3-(trimethylammonium)propyl starches; Carbonate rock; Cationic degree modifications; Enhanced oil recovery; Modified starches; Wettability.