Aerosol assisted synthesis of a pH responsive curcumin anticancer drug nanocarrier using chitosan and alginate natural polymers

Sci Rep. 2023 Nov 8;13(1):19389. doi: 10.1038/s41598-023-46904-4.

Abstract

In recent years, several nanocarrier synthesis methods have been developed. In cancer therapy, the use of smart nanocarriers is of interest. Smart nanocarriers respond to their environment and can release their cargo in a controlled manner under the action of internal or external stimuli. In this work, we report on the development of an aerosol-assisted method for the synthesis of curcumin-loaded chitosan/alginate-based polymeric nanocarrier (CurNCs). A custom-fabricated multi-nebulizer system was utilized for the synthesis of CurNCs. The developed system comprises three main parts a sprayer, an electric heater tunnel, and a collector. Curcumin and chitosan solutions were sprayed using a pneumatic multinebulizer into the electric heater tunnel to form chitosan-curcumin assemblies. Then, the aerosol was guided into the collector solution containing sodium alginate and tri-poly phosphate aqueous solution for further cross-linkage. The synthesized CurNCs were characterized using TEM, DLS, and FTIR techniques. The TEM size of the nanoparticles was 8.62 ± 2.25 nm. The release experiments revealed that the nanocarrier is sensitive to the environment pH as more curcumin is released at acidic pH values (as is the case for cancerous tissues) compared to physiological pH. The curcumin content of the nanocarrier was 77.27 mg g-1 with a drug loading efficiency of 62%. The in-vitro cytotoxicity of the synthesized nanocarrier was evaluated against the MCF7 breast cancer cell line. The IC50 concentrations for CurNCs and curcumin were obtained as 14.86 and 16.45 mg mL-1, respectively. The results showed that while the empty nanocarrier shows non-significant cytotoxicity, the CurNCs impact the cell culture and cause prolonged cell deaths. Overall, pH-responsive curcumin polymeric nanocarrier was synthesized using a custom fabricated aerosol-based method. The method enabled fast and feasible synthesis of the nanocarrier with high efficiency.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aerosols
  • Alginates
  • Antineoplastic Agents* / pharmacology
  • Chitosan*
  • Curcumin* / pharmacology
  • Hydrogen-Ion Concentration
  • Polymers

Substances

  • Curcumin
  • Chitosan
  • Aerosols
  • Alginates
  • Polymers
  • Antineoplastic Agents