Simulation and prediction of the geographical distribution of five Caragana species in the north temperate zone

Environ Monit Assess. 2023 Nov 8;195(12):1427. doi: 10.1007/s10661-023-12067-y.

Abstract

The shrub encroachment caused by Caragana species (mainly C. microphylla, C. korshinskii, C. tibetica, C. stenophylla, and C. pygmaea) in the north temperate zone has significant impacts on ecosystems. Understanding the distribution of Caragana species' responses to climate change is increasingly relevant to the dynamic of shrub encroachment. In this study, we gathered 1124 geographical distribution records for 5 Caragana species. Through principal component analysis and Pearson correlation analysis, 11 environmental variables were identified. We employed the maximum entropy (MaxEnt) model and utilized the current and future climate dataset from 2041 to 2060 based on two extreme climate scenarios (RCP2.6 and RCP8.5) and atmospheric circulation models (BCC_CSM1.1 and IPSLCM5A-LR) to assess the potential distribution patterns and dynamic change with global warming. The results showed the following: (1) Currently, the five Caragana species are mainly distributed in the central and western parts of the Inner Mongolia Autonomous Region, Mongolia, and the southern parts of Russia. (2) In the future, the habitable zone of C. microphylla and C. korshinskii will expand gradually, while the distribution probability of C. stenophylla, C. tibetica, and C. pygmaea will shrink significantly in 60-80% of the area, and the habitable area will fluctuate sharply. (3) The range of the five species of Caragana expansion area is projected to be 1229.43×106 km2-1412.32×106 km2, with the suitable habitats expected to extend northward in the future, primarily concentrated in central Mongolia and around Lake Baikal in Russia. This research provides guidance for protecting grassland resources and ensuring sustainable development under shrub encroachment.

Keywords: Caragana; Climate change; Environmental factors; Geographical distribution; MaxEnt model.

MeSH terms

  • Caragana*
  • China
  • Computer Simulation
  • Ecosystem
  • Environmental Monitoring