Crystal structure, Hirshfeld surface and crystal void analysis, inter-molecular inter-action energies, DFT calculations and energy frameworks of 2 H-benzo[ b][1,4]thia-zin-3(4 H)-one 1,1-dioxide

Acta Crystallogr E Crystallogr Commun. 2023 Oct 19;79(Pt 11):1037-1043. doi: 10.1107/S205698902300868X. eCollection 2023 Nov 1.

Abstract

In the title mol-ecule, C8H7NO3S, the nitro-gen atom has a planar environment, and the thia-zine ring exhibits a screw-boat conformation. In the crystal, corrugated layers of mol-ecules parallel to the ab plane are formed by N-H⋯O and C-H⋯O hydrogen bonds together with C-H⋯π(ring) and S=O⋯π(ring) inter-actions. The layers are connected by additional C-H⋯O hydrogen bonds and π-stacking inter-actions. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (49.4%), H⋯H (23.0%) and H⋯C/C⋯H (14.1%) inter-actions. The volume of the crystal voids and the percentage of free space were calculated as 75.4 Å3 and 9.3%. Density functional theory (DFT) computations revealed N-H⋯O and C-H⋯O hydrogen-bonding energies of 43.3, 34.7 and 34.4 kJ mol-1, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the electrostatic energy contribution. Moreover, the DFT-optimized structure at the B3LYP/ 6-311 G(d,p) level is compared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap.

Keywords: Crystal structure; C—H⋯π(ring) inter­action; crystal structure; hydrogen bond; sulfone; π-stacking.

Grants and funding

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).