Excited-State Dynamics of a Photoacid: A Potential Probe for Recognizing Transition from Lamellar to Nonlamellar Inverted Structures of Liposome based Nanocarriers

Chemphyschem. 2024 Jan 15;25(2):e202300635. doi: 10.1002/cphc.202300635. Epub 2023 Nov 27.

Abstract

Liposomes of a cationic lipid dioctadecyldimethylammonium bromide (DODAB) are efficient nanocarriers of nucleic acids. Incorporation of a neutral lipid monoolein (MO) in excess (xMO >0.5) changes the lamellar organization of DODAB liposomes into non-lamellar inverted structures of DODAB/MO liposomes facilitating nucleic acid delivery to cells. Photoexcitation of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), a photoacid, initiates an excited state proton transfer (ESPT) reaction in its protonated form (ROH*) generating the deprotonated anionic form (RO- *). The fluorescence intensity ratio (IROH* /IRO-* ) of these two forms is governed by the ESPT dynamics, and increases with increasing MO content (xMO ) in the cationic liposomes of DODAB. Transition from lamellar organization of DODAB liposomes into non-lamellar inverted structures of DODAB/MO liposomes, due to incorporation of MO (xMO ~0.7), is manifested by a significant increase of ESPT time (τPT ) and the time constant of wobbling motion (τW ) of HPTS. Thus, the lamellar organizations of DODAB or DODAB-rich (xMO 0.2) liposomes and the non-lamellar organizations of MO-rich (xMO ~0.7) liposomes are recognized by significantly different excited state dynamics of the photoacid.

Keywords: Excited state proton transfer; Lamellar organization; Liposomes; Nanocarrier; Non-lamellar inverted structures.

MeSH terms

  • Liposomes* / chemistry
  • Quaternary Ammonium Compounds* / chemistry

Substances

  • Liposomes
  • dimethyldioctadecylammonium
  • Quaternary Ammonium Compounds