Impact of ground surface subsidence caused by underground coal mining on natural gas pipeline

Sci Rep. 2023 Nov 7;13(1):19327. doi: 10.1038/s41598-023-46814-5.

Abstract

Underground mining of minerals is accompanied by a change in the rock mass geomechanical situation. This leads to the redistribution of stresses in it and the occurrence of unexpected displacements and deformations of the earth's surface. A significant part of the civil and industrial infrastructure facilities are located within the mine sites, where mining and tunneling operations are constantly conducted. Irrational planning of mining operations can lead to loss of stability and destruction of undermined facilities. Therefore, it is important to study the earth's surface deformation processes during mining operations, which ensures safe and sustainable operating conditions. The research objective of this paper is to analyse the behaviour of a natural gas pipeline under the influence of underground mining activities, with a particular focus on understanding the effects of horizontal surface deformations and their potential impact on pipeline safety and structural integrity. Its performance and safety are determined on the basis of the found parameters of the earth's surface horizontal deformations and their comparison with permissible parameters characterizing the conditions for laying pipelines, depending on the mining-geological conditions and the degree of their undermining. Based on determined conditions for the safe undermining of the natural gas pipeline, it has been revealed that in its section between the PK212+40 and PK213+80 (140 m) pickets, the estimated parameters of the earth's surface horizontal deformations exceed their permissible values. This can cause deformation and damage to the pipeline. For the safe operation of the pipeline during the period of its undermining, in order to eliminate the hazardous impact of mining the longwall face, additional protection measures must be applied. It is therefore recommended that the gas pipeline between the PK212 and PK214+20 pickets be opened prior to the displacement process (200 m from the stoping face), thus reducing the density of the gas pipeline-soil system. Recommendations for controlling the earth's surface deformations within the natural gas pipeline route are also proposed, which will ensure premature detection of the negative impact of mining operations.