Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 Reduction

Nanomicro Lett. 2023 Nov 6;16(1):5. doi: 10.1007/s40820-023-01221-3.

Abstract

We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO2 reduction reaction (CO2RR) via Mo-S bridging bonds sites in Sv-In2S3@2H-MoTe2. The X-ray absorption near-edge structure shows that the formation of Sv-In2S3@2H-MoTe2 adjusts the coordination environment via interface engineering and forms Mo-S polarized sites at the interface. The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption, time-resolved, and in situ diffuse reflectance-Infrared Fourier transform spectroscopy. A tunable electronic structure through steric interaction of Mo-S bridging bonds induces a 1.7-fold enhancement in Sv-In2S3@2H-MoTe2(5) photogenerated carrier concentration relative to pristine Sv-In2S3. Benefiting from lower carrier transport activation energy, an internal quantum efficiency of 94.01% at 380 nm was used for photocatalytic CO2RR. This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO2RR.

Keywords: Bridging sites; CO2 reduction; Electronic structure; Quantum efficiency; Steric interaction.