Laser Synthesis of PtMo Single-Atom Alloy Electrode for Ultralow Voltage Hydrogen Generation

Adv Mater. 2024 Feb;36(5):e2305375. doi: 10.1002/adma.202305375. Epub 2023 Dec 5.

Abstract

Maximizing atom-utilization efficiency and high current stability are crucial for the platinum (Pt)-based electrocatalysts for hydrogen evolution reaction (HER). Herein, the Pt single-atom anchored molybdenum (Mo) foil (Pt-SA/Mo-L) as a single-atom alloy electrode is synthesized by the laser ablation strategy. The local thermal effect with fast rising-cooling rate of laser can achieve the single-atom distribution of the precious metals (e.g., Pt, Rh, Ir, and Ru) onto the Mo foil. The synthesized self-standing Pt-SA/Mo-L electrode exhibits splendid catalytic activity (31 mV at 10 mA cm-2 ) and high-current-density stability (≈850 mA cm-2 for 50 h) for HER in acidic media. The strong coordination of Pt-Mo bonding in Pt-SA/Mo-L is critical for the efficient and stable HER. In addition, the ultralow electrolytic voltage of 0.598 V to afford the current density of 50 mA cm-2 is realized by utilization of the anodic molybdenum oxidation instead of the oxygen evolution reaction (OER). Here a universal synthetic strategy of single-atom alloys (PtMo, RhMo, IrMo, and RuMo) as self-standing electrodes is provided for ultralow voltage and membrane-free hydrogen production.

Keywords: anodic oxidation reactions; electrolyzers; laser synthesis; self-standing electrodes; single-atom alloys.