Biosorption Potential of Arachis hypogaea-Derived Biochar for Cd and Ni, as Evidenced through Kinetic, Isothermal, and Thermodynamics Modeling

ACS Omega. 2023 Oct 18;8(43):40128-40139. doi: 10.1021/acsomega.3c02986. eCollection 2023 Oct 31.

Abstract

Biochar derived from plant biomass has great potential for the decontamination of aqueous media. It is the need of the hour to test biochar derived from economical, easily available, and novel materials. In this regard, the present study provides insight into the sorption of two heavy metals, i.e., cadmium (Cd) and nickel (Ni), using native Arachis hypogaea and its biochar prepared through pyrolysis. The effect of different factors, including interaction time, initial concentration of adsorbate, and temperature, as well as sorbent dosage, was studied on the sorption of Cd and Ni through a batch experiment. Characterization of the native biowaste and prepared biochar for its surface morphology and functional group identification was executed using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Results revealed the presence of different functional groups such as -OH on the surface of the adsorbent, which plays an important role in metal attachment. SEM reveals the irregular surface morphology of the adsorbent, which makes it easy for metal attachment. Thermogravimetric analysis shows the stability of A. hypogaea biochar up to 380 °C as compared with native adsorbent. The adsorption efficacy of A. hypogaea was found to be higher than that of native A. hypogaea for both metals. The best adsorption of Cd (94.5%) on biochar was observed at a concentration of 40 ppm, an adsorbent dosage of 2 g, a contact time of 100 min, and a temperature of 50 °C. While the optimum conditions for adsorption of Ni on biochar (97.2% adsorption) were reported at a contact time of 100 min, adsorbent dosage of 2.5 g, initial concentration of 60 ppm, and temperature of 50 °C. Results revealed that biochar offers better adsorption of metal ions as compared with raw samples at low concentrations. Isothermal studies show the adsorption mechanism as physical adsorption, and the negative value of Gibb's free energy confirms the spontaneous nature of the adsorption reaction. An increase in entropy value favors the adsorption process. Results revealed that the sorbent was a decent alternative to eliminate metal ions from the solution instead of costly adsorbents.