Inflammatory biomarkers link perceived stress with metabolic dysregulation

Brain Behav Immun Health. 2023 Oct 17:34:100696. doi: 10.1016/j.bbih.2023.100696. eCollection 2023 Dec.

Abstract

Objective: Perceived stress has been identified as a risk factor for metabolic syndrome. However, the intermediate pathways underlying this relationship are not well understood. Inflammatory responses may be one process by which stress leads to metabolic dysregulation. Prior work has shown that chronic stress is associated with elevated systemic inflammation and that altered inflammatory activity contributes to the pathogenesis of metabolic syndrome. The current analyses tested this hypothesis by examining inflammation as a pathway by which perceived stress affects metabolic health.

Methods: Data from the Midlife in the United States Study (MIDUS) (N = 648; Mean age = 52.3) provided measures of perceived stress, inflammatory biomarkers [C-reactive protein (CRP), interleukin-6 (IL-6), E-selectin, fibrinogen, intracellular adhesion molecule-1 (ICAM-1)] and metabolic health markers. Confirmatory factor analysis (CFA) was used to confirm the fit of a hierarchical model of metabolic syndrome in our sample. Structural equation modeling (SEM) was used to test the assumption that inflammation mediates the association between perceived stress and the latent factor representing metabolic syndrome.

Results: The CFA of metabolic syndrome demonstrated excellent goodness of fit to our sample [CFI = 0.97, TLI = 0.95, RMSEA = 0.06, SMSR = 0.05]. Mediation analysis with SEM revealed that the indirect pathway linking stress to metabolic dysregulation through inflammation was significant [B = 0.08, SE = 0.01, z = 3.69, p < .001, 95% confidence interval CI (0.04, 0.13)].

Conclusions: These results suggest that inflammatory biomarkers are a viable explanatory pathway for the relationship between perceived stress and metabolic health consequences. Interventions that target psychosocial stress may serve as cost-effective and accessible treatment options for mitigating inflammatory health risks.

Keywords: Cardiovascular disease; Inflammation; Metabolic syndrome; Stress; Type II diabetes.