Prior knowledge based deep learning auto-segmentation in magnetic resonance imaging-guided radiotherapy of prostate cancer

Phys Imaging Radiat Oncol. 2023 Oct 10:28:100498. doi: 10.1016/j.phro.2023.100498. eCollection 2023 Oct.

Abstract

Background and purpose: Automation is desirable for organ segmentation in radiotherapy. This study compared deep learning methods for auto-segmentation of organs-at-risk (OARs) and clinical target volume (CTV) in prostate cancer patients undergoing fractionated magnetic resonance (MR)-guided adaptive radiation therapy. Models predicting dense displacement fields (DDFMs) between planning and fraction images were compared to patient-specific (PSM) and baseline (BM) segmentation models.

Materials and methods: A dataset of 92 patients with planning and fraction MR images (MRIs) from two institutions were used. DDFMs were trained to predict dense displacement fields (DDFs) between the planning and fraction images, which were subsequently used to propagate the planning contours of the bladder, rectum, and CTV to the daily MRI. The training was performed either with true planning-fraction image pairs or with planning images and their counterparts deformed by known DDFs. The BMs were trained on 53 planning images, while to generate PSMs, the BMs were fine-tuned using the planning image of a given single patient. The evaluation included Dice similarity coefficient (DSC), the average (HDavg) and the 95th percentile (HD95) Hausdorff distance (HD).

Results: The DDFMs with DSCs for bladder/rectum of 0.76/0.76 performed worse than PSMs (0.91/0.90) and BMs (0.89/0.88). The same trend was observed for HDs. For CTV, DDFM and PSM performed similarly yielding DSCs of 0.87 and 0.84, respectively.

Conclusions: DDFMs were found suitable for CTV delineation after rigid alignment. However, for OARs they were outperformed by PSMs, as they predicted only limited deformations even in the presence of substantial anatomical changes.

Keywords: Auto-segmentation; Deep learning; MR-Linac; MRgRT; Patient-specific models; Prostate cancer; Spatial transformer layer.