Genome-wide identification of the LRR-RLK gene family in peanut and functional characterization of AhLRR-RLK265 in salt and drought stresses

Int J Biol Macromol. 2024 Jan;254(Pt 2):127829. doi: 10.1016/j.ijbiomac.2023.127829. Epub 2023 Nov 4.

Abstract

Leucine-rich repeat receptor-like kinases (LRR-RLKs) play important roles in plant developmental regulations and various stress responses. Peanut (Arachis hypogaea L.) is a worldwide important oil crop; however, no systematic identification or analysis of the peanut LRR-RLK gene family has been reported. In present study, 495 LRR-RLK genes in peanut were identified and analyzed. The 495 AhLRR-RLK genes were classed into 14 groups and 10 subgroups together with their Arabidopsis homologs according to phylogenetic analyses, and 491 of 495 AhLRR-RLK genes unequally located on 20 chromosomes. Analyses of gene structure and protein motif organization revealed similarity in exon/intron and motif organization among members of the same subgroup, further supporting the phylogenetic results. Gene duplication events were found in peanut LRR-RLK gene family via syntenic analysis, which were important in LRR-RLK gene family expansion in peanut. We found that the expression of AhLRR-RLK genes was detected in different tissues using RNA-seq data, implying that AhLRR-RLK genes may differ in function. In addition, Arabidopsis plants overexpressing stress-induced AhLRR-RLK265 displayed lower seed germination rates and root lengths compared to wild-type under exogenous ABA treatment. Notably, overexpression of AhLRR-RLK265 enhanced tolerance to salt and drought stresses in transgenic Arabidopsis. Moreover, the AhLRR-RLK265-OE lines were found to have higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) under salt and drought stress treatments. We believe these results may provide valuable information about the function of peanut LRR-RLK genes for further analysis.

Keywords: Abiotic stress; Gene duplication; Gene family; LRR-RLK; Peanut.

MeSH terms

  • Arabidopsis* / metabolism
  • Arachis* / genetics
  • Arachis* / metabolism
  • Droughts
  • Gene Expression Regulation, Plant
  • Phylogeny
  • Plant Proteins / chemistry
  • Protein-Tyrosine Kinases / metabolism
  • Sodium Chloride / metabolism

Substances

  • Protein-Tyrosine Kinases
  • Sodium Chloride
  • Plant Proteins