Distribution and source identification of polycyclic aromatic hydrocarbons (PAHs) with PCA-MLR and PMF methods in the topsoil of Chengdu at SW, China

Sci Total Environ. 2024 Jan 15:908:168263. doi: 10.1016/j.scitotenv.2023.168263. Epub 2023 Nov 4.

Abstract

In spite of extensive studies on the features of polycyclic aromatic hydrocarbons (PAHs) as typical persistent organic pollutants (POPs) in cities, lack of understanding on the distribution and source characteristics of PAHs in big city with basin climate that can easily accelerate the pollution. Therefore, we sampled and analyzed PAHs from forty-five topsoil samples evenly distributed in Chengdu and the data shows that: (1) concentrations of ∑16PAHs in the study area ranged from 88.56 to 4448.34 ng/g, with a mean value of 739.07 ng/g, which is a lower level compared to similar cities, the distribution and proportion of LMW-PAHs show that the migration of pollution is blocked by the topography of the basin; (2) principal component analysis-multiple linear regression (PCA-MLR) and positive matrix factorization (PMF) indicated that combustion of fossil fuels and biomass is the most important source of PAHs in Chengdu; (3) the toxic equivalency factors of benzo[a]pyrene indicated a low risk of ∑16PAHs in all areas in Chengdu; (4) the inherited lifetime carcinogenic risk (ILCR) showed a relatively low level of potential risk in the region, while female inhabitants in several regions seem to suffer from higher health risks. Overall, our case study of PAHs in the topsoil at Chengdu city at SW China indicates that the PCA-MLR analysis is useful to identify the source of PAHs in the urban region with complicated pollution source.

Keywords: Health risk assessment; PAHs; Source identification; Topsoil.