Approaching Theoretical Limits in the Performance of Printed P-Type CuI Transistors via Room Temperature Vacancy Engineering

Adv Mater. 2023 Dec;35(51):e2307206. doi: 10.1002/adma.202307206. Epub 2023 Nov 16.

Abstract

Development of a novel high performing inorganic p-type thin film transistor could pave the way for new transparent electronic devices. This complements the widely commercialized n-type counterparts, indium-gallium-zinc-oxide (IGZO). Of the few potential candidates, copper monoiodide (CuI) stands out. It boasts visible light transparency and high intrinsic hole mobility (>40 cm2 V-1 s-1 ), and is suitable for various low-temperature processes. However, the performance of reported CuI transistors is still below expected mobility, mainly due to the uncontrolled excess charge- and defect-scattering from thermodynamically favored formation of copper and iodine vacancies. Here, a solution-processed CuI transistor with a significantly improved mobility is reported. This enhancement is achieved through a room-temperature vacancy-engineering processing strategy on high-k dielectrics, sodium-embedded alumina. A thorough set of chemical, structural, optical, and electrical analyses elucidates the processing-dependent vacancy-modulation and its corresponding transport mechanism in CuI. This encompasses defect- and phonon-scattering, as well as the delocalization of charges in crystalline domains. As a result, the optimized CuI thin film transistors exhibit exceptionally high hole mobility of 21.6 ± 4.5 cm2 V-1 s-1 . Further, the successful operation of IGZO-CuI complementary logic gates confirms the applicability of the device.

Keywords: complementary metal-oxide-semiconductor logic circuits; inorganic p-type semiconductors; solution-processed electronics; transparent electronics.