Comprehensive assembly and comparative examination of the full mitochondrial genome in Castanea mollissima Blume

Genomics. 2023 Nov;115(6):110740. doi: 10.1016/j.ygeno.2023.110740. Epub 2023 Nov 2.

Abstract

The Chinese chestnut, Castanea mollissima Blume, a nut-bearing tree native to China and North Korea, belongs to the Fagaceae family. As an important genetic resource, C. mollissima is vital in enhancing edible chestnut varieties and offers significant insights into the origin and evolution of chestnut species. While the chloroplast genome of C. mollissima has been sequenced, its mitochondrial genome (mitogenome) remains largely uncharted. In this study, we have characterized the C. mollissima mitogenome, assembling it utilizing reads from both BGI and Nanopore sequencing platforms, and conducted a comparative analysis with the mitochondrial genomes of closely related species. The mitogenome of C. mollissima manifests a polycyclic structure consisting of two circular molecules measuring 363,232 bp and 24,806 bp, respectively. This genome encompasses 35 unique protein-coding genes, 19 tRNA genes, and three rRNA genes. A total of 139 SSRs were identified throughout the entire C. mollissima mitogenome. Furthermore, the combined length of homologous fragments between the chloroplast and mitochondrial genomes was 5766 bp, constituting 1.49% of the mitogenome. We also predicted 484 RNA editing sites in C. mollissima, demonstrating C-to-U RNA editing. Phylogenetic analysis of related species' mitogenomes showed that C. mollissima was closely related to Lithocarpus litseifolius (Hance) Chun and Quercus acutissima Carruth. Interestingly, the mitogenome sequences of C. mollissima, L. litseifolius, Q. acutissima, Fagus sylvatica L., and Juglans mandshurica Maxim did not show conservation in their alignments, indicating frequent genome reorganization. This report marks the inaugural study of the C. mollissima mitogenome, serving as a benchmark genome for economically significant plants within the Castanea genus. Moreover, it supplies invaluable information that can guide future molecular breeding efforts and contribute to the broader understanding of chestnut genomics.

Keywords: Castanea mollissima; Genomic recombination; Mitochondrial genome; Molecular breeding; Phylogenetic analysis.

MeSH terms

  • China
  • Genome, Mitochondrial*
  • Genomics
  • Phylogeny
  • Quercus*