Epigenetically dysregulated NOTCH-Delta-HES signaling cascade can serve as a subtype classifier for acute lymphoblastic leukemia

Ann Hematol. 2024 Feb;103(2):511-523. doi: 10.1007/s00277-023-05515-9. Epub 2023 Nov 3.

Abstract

The NOTCH-Delta-HES signaling cascade is regarded as a double-edged sword owing to its dual tumor-suppressor and oncogenic roles, in different cellular environments. In the T-cells, it supports leukemogenesis by promoting differentiation while in B-cells, it controls leukemogenesis by inhibiting early differentiation/inducing growth arrest in the lead to apoptosis. The present study was undertaken to assess if this bi-faceted behavior of NOTCH family can be exploited as a diagnostic biomarker or subtype classifier of acute lymphoblastic leukemia (ALL). In this pursuit, expression of seven NOTCH cascade genes was analyzed in bone marrow (BM) biopsy and blood plasma (BP) of pediatric ALL patients using quantitative PCR (qPCR). Further, promoter DNA methylation status of the differentially expressed genes (DEGs) was assessed by methylation-specific qMSP and validated through bisulphite amplicon sequencing. Whereas hypermethylation of JAG1, DLL1, and HES-2, HES-4, and HES-5 was observed in all patients, NOTCH3 was found hypermethylated specifically in Pre-B ALL cases while DLL4 in Pre-T ALL cases. Aberrant DNA methylation strongly correlated with downregulated gene expression, which restored at complete remission stage as observed in "follow-up/post-treatment" subjects. The subtype-specific ROC curve analysis and Kaplan-Meier survival analysis predicted a clinically applicable diagnostic and prognostic potential of the panel. Moreover, the logistic regression model (Pre-B vs Pre-T ALL) was found to be the best-fitted model (McFadden's R2 = 0.28, F1 measure = 0.99). Whether analyzed in BM-aspirates or blood plasma, the NOTCH epigenetic signatures displayed comparable results (p < 0.001), advocating the potential of NOTCH-Delta-HES cascade, as a subtype classifier, in minimally invasive diagnosis of ALL.

Keywords: Biomarkers; Bisulphite amplicon sequencing; Differential expression; Leukemia; Liquid biopsy; NOTCH cascade; Promoter methylation.

MeSH terms

  • Child
  • DNA Methylation
  • Humans
  • Precursor B-Cell Lymphoblastic Leukemia-Lymphoma* / genetics
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma* / diagnosis
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma* / genetics
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma* / diagnosis
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma* / genetics
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma* / metabolism
  • Receptors, Notch / genetics
  • Receptors, Notch / metabolism
  • Signal Transduction / genetics

Substances

  • Receptors, Notch