Core-Shell NiS@SrTiO3 Nanorods on Titanium for Enhanced Osseointegration via Programmed Regulation of Bacterial Infection, Angiogenesis, and Osteogenesis

ACS Appl Mater Interfaces. 2023 Nov 3. doi: 10.1021/acsami.3c11995. Online ahead of print.

Abstract

Developing bone implants with dynamic self-adjustment of antibacterial, angiogenic, and osteogenic functions in line with a bone regenerative cascade is highly required in orthopedics. Herein, a unique core-shell nanorods array featuring a thin layer of NiS coated on each SrTiO3 nanorod (NiS@SrTiO3) was in situ constructed on titanium (Ti) through a two-step hydrothermal treatment. Under near-infrared (NIR) irradiation, the photoresponsive effect of NiS layer in synergy with the physical perforation of SrTiO3 nanorods initially enabled in vitro antibacterial rates of 96.5% to Escherichia coli and 93.1% to Staphylococcus aureus. With the degradation of the NiS layer, trace amounts of Ni ions were released, which accelerated angiogenesis by upregulating the expression of vascular regeneration-related factors, while the gradual exposure of SrTiO3 nanorods could simultaneously enhance the surface hydrophilicity in favor of cell adhesion and slowly release Sr ions to promote the proliferation and differentiation of MC3T3-E1 cells. The in vivo assessment verified not only the satisfactory antibacterial effect but also the superior osteogenic ability of the NiS@SrTiO3/Ti group with the aid of NIR irradiation, finally promoting the osseointegration of the Ti implant. The modification method endowing Ti implant with antibacterial, angiogenic, and osteogenic functions provides a new strategy to improve the long-term reliability of Ti-based devices.

Keywords: Ti-implant; angiogenesis; antibacterial; biodegradation; osseointegration.