Experimental and numerical investigation on a trimaran airwake, geometry modification

Heliyon. 2023 Oct 20;9(11):e21144. doi: 10.1016/j.heliyon.2023.e21144. eCollection 2023 Nov.

Abstract

The aerodynamic interaction between a helicopter and a trimaran ship's flight deck can be complex and have an impact on handling quality and performance, especially in turbulent conditions. This article presents research on the flight deck geometry of a trimaran vessel without the presence of a helicopter. Both Particle Image Velocimetry (PIV) and computational fluid dynamics (CFD) were used to analyze the effect of wind velocity on air pressure in the flight deck region. The study proposed and evaluated different geometries of the top structure at several air velocities to minimize pressure differences. The results of the numerical simulation were validated by experimental measurements using PIV, which showed that the effect of the Reynolds number on the non-dimensional pressure near the top structure is negligible except for the biggest Reynolds number (Re = 50e6), while at x/L = 0.5 the significant difference can be seen, however, the same result found for Re = 38e6 and 50e6. At the farthest distance (x/L = 1), the pressure difference for different Reynolds numbers case studies is negligible. Among the various geometries assessed, the maximum non-dimensional pressure differences along the lines show the highest value occurs for the base geometry (A) while geometries C and F show lower values, which have chamfering along the middle and side horizontal edges at a 45-degree angle and chamfering along all vertical and horizontal edges at a 30-degree angle.

Keywords: Airwake; Experimental measurement; Numerical simulation; PIV; Trimaran.