Deletions of singular U1 snRNA gene significantly interfere with transcription and 3'-end mRNA formation

PLoS Genet. 2023 Nov 2;19(11):e1011021. doi: 10.1371/journal.pgen.1011021. eCollection 2023 Nov.

Abstract

Small nuclear RNAs (snRNAs) are structural and functional cores of the spliceosome. In metazoan genomes, each snRNA has multiple copies/variants, up to hundreds in mammals. However, the expressions and functions of each copy/variant in one organism have not been systematically studied. Focus on U1 snRNA genes, we investigated all five copies in Drosophila melanogaster using two series of constructed strains. Analyses of transgenic flies that each have a U1 promoter-driven gfp revealed that U1:21D is the major and ubiquitously expressed copy, and the other four copies have specificities in developmental stages and tissues. Mutant strains that each have a precisely deleted copy of U1-gene exhibited various extents of defects in fly morphology or mobility, especially deletion of U1:82Eb. Interestingly, splicing was changed at limited levels in the deletion strains, while large amounts of differentially-expressed genes and alternative polyadenylation events were identified, showing preferences in the down-regulation of genes with 1-2 introns and selection of proximal sites for 3'-end polyadenylation. In vitro assays suggested that Drosophila U1 variants pulled down fewer SmD2 proteins compared to the canonical U1. This study demonstrates that all five U1-genes in Drosophila have physiological functions in development and play regulatory roles in transcription and 3'-end formation.

MeSH terms

  • Animals
  • Drosophila / genetics
  • Drosophila / metabolism
  • Drosophila melanogaster* / genetics
  • Drosophila melanogaster* / metabolism
  • Mammals / genetics
  • RNA Splicing / genetics
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • RNA, Small Nuclear* / genetics
  • RNA, Small Nuclear* / metabolism

Substances

  • U1 small nuclear RNA
  • RNA, Small Nuclear
  • RNA, Messenger

Grants and funding

YZX received grants 2021YFA1100500 and 2021YFC2700700 from National Key Research and Development Program of China (https://chinainnovationfunding.eu/national-key-rd-programmes). YZX received grants 31971225 and 32261133522, and YJF received grant 31570821 from National Natural Science Foundation of China (https://www.nsfc.gov.cn/english/site_1/index.html). YZX received grants 2020CFA017 from Natural Science Foundation of Hubei Province, China (https://kjt.hubei.gov.cn). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.