Solubilization of Fully Hydrolyzed Poly(vinyl alcohol) at Room Temperature for Fabricating Recyclable Hydrogels

ACS Macro Lett. 2023 Nov 21;12(11):1543-1548. doi: 10.1021/acsmacrolett.3c00555. Epub 2023 Nov 2.

Abstract

The versatility of poly(vinyl alcohol) (PVA) makes it extensively utilized across various industries, while the solubilization of PVA in aqueous media is essential for its applications. However, the high crystallinity of the fully hydrolyzed PVA poses a big challenge in terms of its dissolution in aqueous media at room temperature. In this work, we present a straightforward, efficient, and safe strategy to achieve this objective by the integration of inorganic additives. The crucial aspect of additives lies in the interference of hydrogen bonds and breaking of the crystal domain within PVA chains, therefore greatly enhancing the solubility. At the optimal condition, the solubility of PVA can reach up to 45 wt% at 25 °C in 4 M HBr solution. It is further proven that the solubility of PVA follows the Hofmeister series well, where the chaotropes facilitate the solubilization process. In addition, the solubility is also significantly determined by the PVA type and additive concentration. By harnessing this feature, we successfully engineer recyclable PVA hydrogels with programmable mechanical properties. The hydrogels exhibit remarkable recyclability by affording a minimum of 8 regeneration cycles without experiencing significant deterioration in mechanical properties. Collectively, this research may significantly contribute to the advancement of PVA applications.