The effect of types of sensory feedback on the acquisition and retention of squat performance: A randomized, double-blind, controlled trial

Scand J Med Sci Sports. 2024 Jan;34(1):e14531. doi: 10.1111/sms.14531. Epub 2023 Nov 2.

Abstract

Various sensory feedback methods are considered important for motor learning, but the effect of each sensory feedback method on effective squat learning still needs to be clarified. This study aimed to investigate the effect of sensory feedback types on the acquisition and retention of a squat. A double-blinded, randomized controlled trial was carried out. Thirty-healthy people were recruited and randomly assigned to the visual feedback group (VFG = 10), tactile feedback group (TFG = 10), and control group (CG = 10). VFG received visual feedback through video data of the participant performing squats, and TFG received tactile feedback through manual contact with a physical therapist. Both groups received feedback on the movements that needed correction after each set was completed. CG maintained rest without receiving any feedback. The retro-reflexive marker, force plate, and electromyography were used to measure body angle, foot center of pressure (COP), and muscle activity. All assessments were measured to confirm a squat acquisition. VFG and TFG showed significant differences in neutral knee position (NKP), trunk forward lean (TFL), anterior knee displacement (AKD), and anteroposterior (AP) foot COP (p < 0.050). In addition, the acquisition was retained until 3 days later for NKP and a week later for TFL, AKD, and AP foot COP in VFG (p < 0.050), while the acquisition was not retained in TFG (p > 0.050). There was no statistically significant change in CG (p > 0.050). This study demonstrated that visual feedback positively affects the acquisition and retention of squats. Therefore, we recommend the use of visual feedback for squat acquisition and retention in exercise novices.

Keywords: motor learning; sensory feedback; squat.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Electromyography
  • Feedback, Sensory* / physiology
  • Humans
  • Knee Joint
  • Movement / physiology
  • Posture*