Using photogrammetry to create virtual permanent plots in rare and threatened plant communities

Appl Plant Sci. 2023 Aug 18;11(5):e11534. doi: 10.1002/aps3.11534. eCollection 2023 Sep-Oct.

Abstract

Premise: Many plant communities across the world are undergoing changes due to climate change, human disturbance, and other threats. These community-level changes are often tracked with the use of permanent vegetative plots, but this approach is not always feasible. As an alternative, we propose using photogrammetry, specifically photograph-based digital surface models (DSMs) developed using structure-from-motion, to establish virtual permanent plots in plant communities where the use of permanent structures may not be possible.

Methods: In 2021 and 2022, we took iPhone photographs to record species presence in 1-m2 plots distributed across alpine communities in the northeastern United States. We then compared field estimates of percent coverage with coverage estimated using DSMs.

Results: Digital surface models can provide effective, minimally invasive, and permanent records of plant species presence and percent coverage, while also allowing managers to mark survey locations virtually for long-term monitoring. We found that percent coverage estimated from DSMs did not differ from field estimates for most species and substrates.

Discussion: In order to continue surveying efforts in areas where permanent structures or other surveying methods are not feasible, photogrammetry and structure-from-motion methods can provide a low-cost approach that allows agencies to accurately survey and record sensitive plant communities through time.

Keywords: alpine plant communities; digital surface model (DSM); long‐term monitoring; photogrammetry; plant conservation; rare plant communities.