Comparing nearshore and embayment scale assessments of submarine groundwater discharge: Significance of offshore groundwater discharge as a nutrient pathway

Sci Total Environ. 2024 Jan 15:908:168068. doi: 10.1016/j.scitotenv.2023.168068. Epub 2023 Oct 30.

Abstract

Submarine groundwater discharge (SGD) can influence biogeochemical cycles in coastal seas by delivering nutrients from the seafloor. Comparison between the nearshore and embayment scale assessments of SGD against river water discharge would be crucial for understanding biogeochemical impacts on the coastal seas because the discharge pattern (non-point or point pathway) is different. Here, we quantified SGD contribution to rivers in nutrient budgets at two scales within a coastal embayment (Obama Bay, Japan) by mass balance models of radon and radium isotopes. We then compared the SGD contribution between the two scales by the meta-analysis for regional data sets conducted in nearshore and embayment scales. The estimated SGD rates in the nearshore and embayment scales in the bay were 7.8 cm d-1 and 20.0 cm d-1, indicating that offshore SGD was more significant than nearshore. The ratios of nutrient fluxes derived from SGD to rivers (SGD:River) in the nearshore scale were 1.7 for dissolved inorganic nitrogen (DIN), 3.0 for phosphorus (DIP), and 0.5 for silica (DSi), while those in the embayment scale increased to 10.4 for DIN, 18.5 for DIP, and 3.9 for DSi. This result indicates that SGD-derived nutrients become more important at larger spatial scales. Meta-analysis revealed that the difference in the contribution of SGD to rivers was affected by the seafloor size and there was no significant difference in SGD rates between nearshore and embayment scale studies. However, our regional study shows the site-specific pattern that SGD rates in the embayment scale were higher than those in the nearshore scale. Overall, we clarified that SGD can be a crucial nutrient pathway for coastal embayments regardless of the spatial scales and contribute to coastal nutrient biogeochemistry in more offshore areas.

Keywords: Aquifer; Nutrients; Radioisotopes; River; Spatial scale; Submarine groundwater discharge.