MXene-based photoacoustic transducer with a high-energy conversion efficiency

Opt Lett. 2023 Nov 1;48(21):5563-5566. doi: 10.1364/OL.505000.

Abstract

The applications of two-dimensional transition metal carbide/nitride (MXene) in the fields of optoelectronics, sustainable energy, and sensors, among others, have been broadly investigated due to their special electrical, optical, and structural properties. In this Letter, MXene (Ti3C2Tx) has been firstly, to the best of our knowledge, adopted for the application of a photoacoustic transducer by taking advantage of the photothermal property. The efficiency of the photoacoustic transducer based on a sandwich structure of glass/MXene/polydimethylsiloxane (PDMS) has been experimentally demonstrated to be 1.25 × 10-2 by converting laser pulses into ultrasonic waves, generating a high acoustic pressure of 15.7 MPa without additional acoustic focusing. That can be explained by the great light absorption and photothermal conversion of the Ti3C2Tx layer.