Spatial distribution of sediment bacterial communities from São Francisco River headwaters is influenced by human land-use activities and seasonal climate shifts

Braz J Microbiol. 2023 Dec;54(4):3005-3019. doi: 10.1007/s42770-023-01150-8. Epub 2023 Nov 1.

Abstract

Riverbed sediments are dynamic freshwater environments colonized by a great diversity of microorganisms which play important roles in supporting freshwater ecosystem by performing a vast array of metabolic functions. Recent evidence generated by HTS approaches has revealed that the structure of sediment microbial communities is influenced by natural seasonal variations in water such as temperature or streamflow as well by disturbances caused by local human activities. Here, a spatiotemporal analysis of sediment microbial distribution from São Francisco River headwaters section was conducted using Illumina 16S rRNA-V4 region amplicon sequencing in order to accomplish three major goals: (i) to investigate whether the diversity and composition of bacterial communities accessed in riverbed sediments vary in response to distinct land-use activities; (ii) to estimate whether the diversity patterns vary between the dry and wet seasons; and (iii) to evaluate whether the diversity of bacterial metabolic functions, predicted by PICRUSt2 approach, varies similarly to the estimated taxonomic diversity. Our findings revealed that bacterial communities in the sediment show differences in diversity and taxonomic composition according to the anthropic activities performed in the local environment. However, the patterns in which this taxonomic diversity is spatially structured show differences between the dry and wet seasons. On the other hand, the most changes in predicted bacterial metabolic functions were verified between sediment samples accessed in portions of the river located in protected and unprotected areas. Our findings contributed with new evidence about the impact of typical land-use practices conducted in countryside landscapes from developing countries on riverbed bacterial communities, both in their taxonomic and functional structure.

Keywords: 16S rDNA; Bacterial communities; Land-use; River; Sediment.

MeSH terms

  • Bacteria / genetics
  • Geologic Sediments / microbiology
  • Humans
  • Microbiota*
  • RNA, Ribosomal, 16S / genetics
  • Rivers* / microbiology
  • Seasons

Substances

  • RNA, Ribosomal, 16S