Dual-emission center ratiometric optical thermometer based on Bi3+ and Mn4+ co-doped SrGd2Al2O7 phosphor

RSC Adv. 2023 Oct 30;13(45):31785-31794. doi: 10.1039/d3ra05988j. eCollection 2023 Oct 26.

Abstract

In recent years, more and more attention has been paid to optical temperature sensing, and how to improve its accuracy is the most important issue. Herein, a new temperature sensing material, SrGd2Al2O7:Bi3+,Mn4+, based on fluorescence intensity ratio was designed in this work. It has both blue-purple and red luminescence under 300 nm excitation, and the dual-emitting centers with distinct colors, the different thermal sensitivities of Bi3+ and Mn4+, and the energy transfer between Bi3+ and Mn4+ give it excellent signal resolution and accurate temperature detection. The Sa of SrGd2Al2O7:0.04Bi3+,0.003Mn4+ phosphor reaches a maximum value of 8.573% K-1 at 473 K, and the corresponding Sr is 1.927% K-1, both of which are significantly better than those of most other reported optical temperature sensing materials. Taking all the results into account, the SrGd2Al2O7:0.04Bi3+,0.003Mn4+ phosphor can be regarded as a prominent FIR-type temperature sensing material.