Investigating Degradation Mechanisms in PtCo Alloy Catalysts: The Role of Co Content and a Pt-Rich Shell Using Operando High-Energy Resolution Fluorescence Detection X-ray Absorption Spectroscopy

ACS Appl Mater Interfaces. 2023 Oct 31. doi: 10.1021/acsami.3c11248. Online ahead of print.

Abstract

Low Pt-based alloy catalysts are regarded as an efficient strategy in achieving high activity for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs). However, the desired durability for the low Pt-based catalysts, such as the Pt1Co3 catalyst, has still been considered a great challenge for PEMFCs. In this study, we investigate sub-2.5 nm PtxCoy alloy catalysts with varying Co content and Pt1Co3@Pt core-shell (CS) nanostructure catalysts obtained through a simple displacement reaction. The Pt1Co3@Pt_H catalysts showed a high mass activity (MA) of 1.46 A/mgPt at 0.9 V and 14% MA loss after 10k accelerated degradation test (ADT) cycles, which suggested the improved stability compared with Pt1Co3 catalysts (52% MA loss). To clarify the degradation mechanism, operando high-energy resolution fluorescence detection X-ray absorption spectroscopy (XAS) was applied in addition to conventional advanced measurement techniques, including operando conventional XAS, to analyze the electronic state and structure changes during operation potentials. We found that introducing Co improves the catalysts' activity mainly from the strain effect, but an excessive amount of Co leads to increased Pt-oxidation, which accelerates the degradation of the catalysts. The Pt1Co3@Pt_H catalyst shows high tolerance to Pt-oxidation, benefiting both the stability and activity. Our findings demonstrate an in-depth understanding of the degradation mechanism and the importance of designing PtCo CS nanostructures with optimal Co content for enhanced performance in PEMFCs.

Keywords: PtCo catalysts; core−shell; operando X-ray absorption spectroscopy; oxygen reduction reaction; proton-exchange membrane fuel cells; stability.