Design study of a novel geometrical arrangement for an in-beam small animal positron emission tomography scanner

Phys Med Biol. 2023 Nov 23;68(23). doi: 10.1088/1361-6560/ad0879.

Abstract

Objective.We designed a geometrical solution for a small animal in-beam positron emission tomography (PET) scanner to be used in the project SIRMIO (Small animal proton irradiator for research in molecular image-guided radiation-oncology). The system is based on 56 scintillator blocks of pixelated LYSO crystals. The crystals are arranged providing a pyramidal-step shape to optimize the geometrical coverage in a spherical configuration.Approach.Different arrangements have been simulated and compared in terms of spatial resolution and sensitivity. The chosen setup enables us to reach a good trade-off between a solid angle coverage and sufficient available space for the integration of additional components of the first design prototype of the SIRMIO platform. The possibility of moving the mouse holder inside the PET scanner furthermore allows for achieving the optimum placement of the irradiation area for all the possible tumor positions in the body of the mouse. The work also includes a study of the scintillator material where LYSO and GAGG are compared with a focus on the random coincidence noise due to the natural radioactivity of Lutetium in LYSO, justifying the choice of LYSO for the development of the final system.Main results.The best imaging performance can be achieved with a sub-millimeter spatial resolution and sensitivity of 10% in the center of the scanner, as verified in thorough simulations of point sources. The simulation of realistic irradiation scenarios of proton beams in PMMA targets with/without air gaps indicates the ability of the proposed PET system to detect range shifts down to 0.2 mm.Significance.The presented results support the choice of the identified optimal design for a novel spherical in-beam PET scanner which is currently under commissioning for application to small animal proton and light ion irradiation, and which might find also application, e.g. for biological image-guidance in x-ray irradiation.

Keywords: DOI PET scanner; proton therapy; range verification; small animal PET.

MeSH terms

  • Animals
  • Equipment Design
  • Mice
  • Phantoms, Imaging
  • Positron-Emission Tomography / methods
  • Protons*
  • Radiotherapy, Image-Guided*

Substances

  • Protons