The Secondary Metabolites of Bacillus subtilis Strain Z15 Induce Apoptosis in Hepatocellular Carcinoma Cells

Probiotics Antimicrob Proteins. 2023 Oct 31. doi: 10.1007/s12602-023-10181-4. Online ahead of print.

Abstract

The lipopeptides produced by Bacillus subtilis have anti-cancer potential. We had previously identified a secondary metabolite of B. subtilis strain Z15 (BS-Z15), which has an operon that regulates lipopeptide synthesis, and also demonstrated that the fermentation products of this strain exerted antioxidant and pro-immune effects. The purpose of this study was to investigate in vitro and in vivo the anticancer effects of BS-Z15 secondary metabolites (BS-Z15 SMs) on hepatocellular carcinoma (HCC) cells. BS-Z15 SMs significantly inhibited H22 cell-derived murine xenograft tumor growth without any systemic toxicity. In addition, BS-Z15 SMs decreased the viability of H22 cells and BEL-7404 cells in vitro with respective IC50 values of 33.83 and 27.26 µg/mL. Consistent with this, BS-Z15 SMs induced apoptosis and G0/G1 phase arrest in the BEL-7404 cells, and the mitochondrial membrane potential was also significantly reduced in a dose-dependent manner. Mechanistically, BS-Z15 SMs upregulated the pro-apoptotic p53, Bax, cytochrome C, and cleaved-caspase-3/9 proteins and downregulated the anti-apoptotic Bcl-2. These findings suggest that the induction of apoptosis in HCC cells by BS-Z15 SMs may be related to the mitochondrial pathway. Thus, the secondary metabolites of B. subtilis strain Z15 are promising to become new anti-cancer drugs for the clinical treatment of liver cancer.

Keywords: Apoptosis; Hepatocellular carcinoma cells; Mitochondrial-dependent pathway; Secondary metabolite of Bacillus subtilis strain Z15.

Grants and funding