Curcumin Analogue Spectral, Nonlinear Optical Properties and All-optical Switching Using Visible, Low Power Cw Laser Beams

J Fluoresc. 2023 Oct 31. doi: 10.1007/s10895-023-03475-x. Online ahead of print.

Abstract

In this study, we conducted the synthesis and diagnosis of compound denoted as 1A3, specifically, (2E,4E,9E,11E)-7-chloro-2,12-diphenyltrideca-2,4,9,11-tetraene-6,8-dione. The photoluminescent and UV-vis spectral properties of this compound are investigated. The compound is dissolved in both chloroform and DMF for analysis purposes. Compound 1A3's nonlinear optical (NLO) characteristics when dissolved in DMF, are extensively studied through a series of experiments including diffraction patterns (DPs) and Z-scan. The optical limiting (OL) property of the 1A3 compound is tested and a threshold value of 12.4 mW at the wavelength 473 nm is obtained. Additionally, we explored its potential for all-optical switching utilizing two low-power visible laser beams. Notably, we achieved a significant nonlinear refractive index (NLRI) reaching up to 5.921 x 10-11 m2/W. To analyze the obtained diffraction patterns, we employed the Fresnel-Kirchhoff integral equation and conducted meticulous simulations. The numerical outcomes showed satisfactory agreement with the experimental observations.

Keywords: Curcumin analogue; Diffraction patterns; Nonlinear optics; Photoluminescence; Z-scan.