High-Fill-Factor Perovskite Solar Cells via Pseudohalide Salt Modification of the Substrate to Mitigate Nonradiative Recombination at the Interface

J Phys Chem Lett. 2023 Nov 9;14(44):9951-9959. doi: 10.1021/acs.jpclett.3c02633. Epub 2023 Oct 31.

Abstract

The utilization of the sol-gel method for fabricating planar SnO2 as the electron transport layer (ETL) induces numerous defects on the SnO2 layer surface and perovskite film bottom, causing considerable deterioration of the device performance. Conventional inorganic salt-doped SnO2 precursor solutions used for passivation may cause incomplete substrate coverage due to the presence of inorganic salt crystals, further degrading the device performance. Here, a substrate modification approach involving the pretreatment of a fluorine-doped SnO2 (FTO) substrate with NH4PF6 is proposed. The interaction between PF6- ions and the FTO substrate enhances SnO2 film quality; excess PF6- ions decrease the number of defects on the film surface. NH4+ ions react with an -OH stabilizing agent in the SnO2 solution and are eliminated during annealing. The combined effects suppress nonradiative recombination and ion migration at the ETL-perovskite interface. The corresponding high-quality perovskite solar cells (PSCs) exhibit a fill factor of ∼0.825; PSC efficiency increases from 19.59% to 22.32%.