Influence of spill-over for 99mTc images and the effect of scatter correction for dual-isotope simultaneous acquisition with 99mTc and 18F using small-animal SPECT-PET/CT system

Phys Eng Sci Med. 2024 Mar;47(1):135-142. doi: 10.1007/s13246-023-01348-y. Epub 2023 Oct 30.

Abstract

A dual-isotope simultaneous acquisition (DISA) of 99mTc and 18F affects the image quality of 99mTc by crosstalk and spill-over from 18F. We demonstrated the influence of spill-over and crosstalk on image quality and its correction effect for DISA SPECT with 99mTc and 18F. A fillable cylindrical chamber of 30 mm with NEMA-NU4 image quality phantom was filled with 99mTc only or a mixed 99mTc and 18F solution (C100). Two small-region chambers were filled with 99mTc only or a mixed 99mTc and 18F solution made at half the radioactivity concentration of C100 (C50) and non-radioactive water (C0). The 18F/99mTc ratio for DISA was set at approximately 0.4-12. Two types of 99mTc transverse images with and without scatter correction (SC and nonSC) were created. The 99mTc images of single-isotope acquisition (SIA) were created as a reference. The DISA/SIA ratio and contrast of 99mTc were compared between SIA and DISA. Although the DISA/SIA ratios with nonSC of C100, C50 and C0 gradually increased with increasing 18F/99mTc ratio, it was nearly constant by SC. The contrasts of C100 and C50 were similar to a reference value for both nonSC and SC. In conclusion, DISA images showed lower image quality as the 18F/99mTc ratio increased. The image quality in hot-spot regions such as C100 and C50 was improved by SC, whereas cold-spot regions such as C0 could not completely remove the influence of spill-over even with SC.

Keywords: DISA; Mixed 99mTc and 18F solution; Scatter correction; Small-animal; Small-animal SPECT/PETCT; Spill-over.

MeSH terms

  • Animals
  • Fluorodeoxyglucose F18
  • Phantoms, Imaging
  • Positron Emission Tomography Computed Tomography*
  • Radiopharmaceuticals*
  • Tomography, Emission-Computed, Single-Photon / methods

Substances

  • Radiopharmaceuticals
  • Fluorodeoxyglucose F18