Soil organic carbon stocks in European croplands and grasslands: How much have we lost in the past decade?

Glob Chang Biol. 2024 Jan;30(1):e16992. doi: 10.1111/gcb.16992. Epub 2023 Oct 30.

Abstract

The EU Soil Strategy 2030 aims to increase soil organic carbon (SOC) in agricultural land to enhance soil health and support biodiversity as well as to offset greenhouse gas emissions through soil carbon sequestration. Therefore, the quantification of current SOC stocks and the spatial identification of the main drivers of SOC changes is paramount in the preparation of agricultural policies aimed at enhancing the resilience of agricultural systems in the EU. In this context, changes of SOC stocks (Δ SOCs) for the EU + UK between 2009 and 2018 were estimated by fitting a quantile generalized additive model (qGAM) on data obtained from the revisited points of the Land Use/Land Cover Area Frame Survey (LUCAS) performed in 2009, 2015 and 2018. The analysis of the partial effects derived from the fitted qGAM model shows that land use and land use change observed in the 2009, 2015 and 2018 LUCAS campaigns (i.e. continuous grassland [GGG] or cropland [CCC], conversion grassland to cropland (GGC or GCC) and vice versa [CGG or CCG]) was one of the main drivers of SOC changes. The CCC was the factor that contributed to the lowest negative change on Δ SOC with an estimated partial effect of -0.04 ± 0.01 g C kg-1 year-1 , while the GGG the highest positive change with an estimated partial effect of 0.49 ± 0.02 g C kg-1 year-1 . This confirms the C sequestration potential of converting cropland to grassland. However, it is important to consider that local soil and environmental conditions may either diminish or enhance the grassland's positive effect on soil C storage. In the EU + UK, the estimated current (2018) topsoil (0-20 cm) SOC stock in agricultural land below 1000 m a.s.l was 9.3 Gt, with a Δ SOC of -0.75% in the period 2009-2018. The highest estimated SOC losses were concentrated in central-northern countries, while marginal losses were observed in the southeast.

Keywords: LUCAS; carbon sequestration; climate change; cropland; grassland; land use change; sustainability.

MeSH terms

  • Agriculture
  • Carbon Sequestration
  • Carbon*
  • Crops, Agricultural
  • Grassland
  • Soil*

Substances

  • Soil
  • Carbon