An intramolecular vibrationally excited intermolecular potential energy surface and predicted 2OH overtone spectroscopy of H2O-Kr

Phys Chem Chem Phys. 2023 Nov 8;25(43):29940-29950. doi: 10.1039/d3cp04126c.

Abstract

A new five-dimensional potential energy surface (PES) for H2O-Kr which explicitly includes the intramolecular 2OH overtone state of the H2O monomer is presented. The intermolecular potential energies were evaluated using explicitly correlated coupled cluster theory [CCSD(T)-F12] with a large basis set. Four vibrationally averaged analytical intermolecular PESs for H2O-Kr with H2O molecules in its |00+〉, |02+〉, |02-〉, and |11+〉 states are obtained by fitting to the multi-dimensional Morse/Long-Range potential function form. Each vibrationally averaged PES fitted to 578 points has root-mean-square (RMS) deviations smaller than 0.14 cm-1 and requires only 58 parameters. The combined radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm were employed to calculate the rovibrational energy levels for |00+〉, |02+〉, |02-〉, and |11+〉 states of the H2O-Kr complexes. The calculated |02-〉Πf/e(101) ← |00+〉Σe(000) and |02+〉Πf/e(110) ← |00+〉Σe(101) infrared transitions are in excellent agreement with the experimental values with RMS discrepancies being only 0.007 and 0.016 cm-1, respectively. These analytical PESs can be used to provide reliable theoretical guidance for future infrared overtone spectroscopy of H2O-Kr.