A novel online survey approach designed to measure consumer sunscreen application thickness-implications for estimating environmental emissions

J Expo Sci Environ Epidemiol. 2023 Oct 28. doi: 10.1038/s41370-023-00608-z. Online ahead of print.

Abstract

Background: The effects of ultraviolet (UV) filters in the aquatic environment have been well studied, but environmental exposures remain unclear and understudied. Consumer usage directly influences the amount of sunscreen products, and subsequently UV filters, potentially released into the environment.

Objective: To conduct a literature review of previous research into sunscreen application thickness, develop a questionnaire protocol designed to semi-quantify sunscreen usage by US consumers, and conduct a large-scale survey to determine a sunscreen application thickness (to face and body) that is more refined than conservative defaults. The United States Food & Drug Administration (US FDA) recommends a sunscreen application rate of 2 mg/cm2. This value is typically used as a worst-case assumption in environmental exposure assessments of UV filters.

Methods: Designed a novel approach to estimate lotion sunscreen application thickness using an online questionnaire protocol employing visual references and self-reported height and weight of the respondents. A literature review was also conducted to collect historical sunscreen usage.

Results: Over 9000 people were surveyed in the US, and after the dataset was refined, their sunscreen application thickness was estimated based on calculated body surface area and reported sunscreen amounts. The mean and median values for survey respondents are 3.00 and 1.78 mg/cm2, respectively, for facial application thickness and 1.52 and 1.35 mg/cm2, respectively, for body application thickness. Earlier research from 1985-2020 reported 36 of the 38 values are below the US FDA's recommended application thickness of 2 mg/cm2 (range 0.2-5 mg/cm2).

Impact statement: This web-based survey is the first of its kind, designed specifically to quantify sunscreen application in a large and diverse set of consumers. This method provides a greater reach to larger populations thus enabling more granular data analysis and understanding. Exposure assessments of sunscreen ingredients typically use conservative parameters. These data can refine those assessments and allow for more informed and science-based risk management decisions.

Keywords: Chemicals in products; Exposure modeling; UV.