Designing and Developing a Vision-Based System to Investigate the Emotional Effects of News on Short Sleep at Noon: An Experimental Case Study

Sensors (Basel). 2023 Oct 12;23(20):8422. doi: 10.3390/s23208422.

Abstract

Background: Sleep is a critical factor in maintaining good health, and its impact on various diseases has been recognized by scientists. Understanding sleep patterns and quality is crucial for investigating sleep-related disorders and their potential links to health conditions. The development of non-intrusive and contactless methods for analyzing sleep data is essential for accurate diagnosis and treatment. Methods: A novel system called the sleep visual analyzer (VSleep) was designed to analyze sleep movements and generate reports based on changes in body position angles. The system utilized camera data without requiring any physical contact with the body. A Python graphical user interface (GUI) section was developed to analyze body movements during sleep and present the data in an Excel format. To evaluate the effectiveness of the VSleep system, a case study was conducted. The participants' movements during daytime naps were recorded. The study also examined the impact of different types of news (positive, neutral, and negative) on sleep patterns. Results: The system successfully detected and recorded various angles formed by participants' bodies, providing detailed information about their sleep patterns. The results revealed distinct effects based on the news category, highlighting the potential impact of external factors on sleep quality and behaviors. Conclusions: The sleep visual analyzer (VSleep) demonstrated its efficacy in analyzing sleep-related data without the need for accessories. The VSleep system holds great potential for diagnosing and investigating sleep-related disorders. The proposed system is affordable, easy to use, portable, and a mobile application can be developed to perform the experiment and prepare the results.

Keywords: BlazePose; computer vision; napping; pose detection; sleep movement.

MeSH terms

  • Humans
  • Sleep Wake Disorders*
  • Sleep*