SecrecyPerformance Analysis of Backscatter Communications with Side Information

Sensors (Basel). 2023 Oct 10;23(20):8358. doi: 10.3390/s23208358.

Abstract

Backscatter communication (BC) systems are a promising technology for internet of things (IoT) applications that allow devices to transmit information by modulating ambient radio signals without the need for a dedicated power source. However, the security of BC systems is a critical concern due to the vulnerability of the wireless channel. This paper investigates the impact of side information (SI) on the secrecy performance of BC systems. SI mainly refers to the additional knowledge that is available to the communicating parties beyond transmitted data, which can be used to enhance reliability, efficiency, security, and quality of service in various communication systems. In particular, in this paper, by considering a non-causally known SI at the transmitter, we derive compact analytical expressions of average secrecy capacity (ASC) and secrecy outage probability (SOP) for the proposed system model to analyze how SI affects the secrecy performance of BC systems. Moreover, a Monte Carlo simulation validates the accuracy of our analytical results and reveals that considering such knowledge at the transmitter has constructive effects on the system performance and ensures reliable communication with higher rates than the conventional BC systems without SI, namely, lower SOP and higher ASC are achievable.

Keywords: average secrecy capacity; backscatter communication; secrecy outage probability; side information.

Grants and funding

This research was funded by the Academy of Finland under grants 345072 and 350464.