A Gene Encoding Xylanase Inhibitor Is a Candidate Gene for Bruchid (Callosobruchus spp.) Resistance in Zombi Pea (Vigna vexillata (L.) A. Rich)

Plants (Basel). 2023 Oct 18;12(20):3602. doi: 10.3390/plants12203602.

Abstract

Two bruchid species, Callosobruchus maculatus and Callosobruchus chinensis, are the most significant stored insect pests of tropical legume crops. Previously, we identified a major QTL, qBr6.1, controlling seed resistance to these bruchids in the cultivated zombi pea (Vigna vexillata) accession 'TVNu 240'. In this study, we have narrowed down the qBr6.1 region and identified a candidate gene conferring this resistance. Fine mapping using F2 and F2:3 populations derived from a cross between TVNu 240 and TVNu 1623 (susceptible) revealed the existence of two tightly linked QTLs, designated qBr6.1-A and qBr6.1-B, within the qBr6.1. The QTLs qBr6.1-A and qBr6.1-B explained 37.46% and 10.63% of bruchid resistance variation, respectively. qBr6.1-A was mapped to a 28.24 kb region containing four genes, from which the gene VvTaXI encoding a xylanase inhibitor was selected as a candidate gene responsible for the resistance associated with the qBr6.1-A. Sequencing and sequence alignment of VvTaXI from TVNu 240 and TVNu 1623 revealed a 1-base-pair insertion/deletion and five single-nucleotide polymorphisms (SNPs) in the 5' UTR and 11 SNPs in the exon. Alignment of the VvTAXI protein sequences showed five amino acid changes between the TVNu 240 and TVNu 1623 sequences. Altogether, these results demonstrated that the VvTaXI encoding xylanase inhibitor is the candidate gene conferring bruchid resistance in the zombi pea accession TVNu 240. The gene VvTaXI will be useful for the molecular breeding of bruchid resistance in the zombi pea.

Keywords: Callosobruchus; Vigna vexillata; bruchid; seed weevil; xylanase inhibitor; zombi pea.