Silicon Combined with Melatonin Reduces Cd Absorption and Translocation in Maize

Plants (Basel). 2023 Oct 11;12(20):3537. doi: 10.3390/plants12203537.

Abstract

Cadmium (Cd) is one of the most toxic and widely distributed heavy metal pollutants, posing a huge threat to crop production, food security, and human health. Corn is an important food source and feed crop. Corn growth is subject to Cd stress; thus, reducing cadmium stress, absorption, and transportation is of great significance for achieving high yields, a high efficiency, and sustainable and safe corn production. The use of silicon or melatonin alone can reduce cadmium accumulation and toxicity in plants, but it is unclear whether the combination of silicon and melatonin can further reduce the damage caused by cadmium. Therefore, pot experiments were conducted to study the effects of melatonin and silicon on maize growth and cadmium accumulation. The results showed that cadmium stress significantly inhibited the growth of maize, disrupted its physiological processes, and led to cadmium accumulation in plants. Compared to the single treatment of silicon or melatonin, the combined application of melatonin and silicon significantly alleviated the inhibition of the growth of maize seedlings caused by cadmium stress. This was demonstrated by the increased plant heights, stem diameters, and characteristic root parameters and the bioaccumulation in maize seedlings. Under cadmium stress, the combined application of silicon and melatonin increased the plant height and stem diameter by 17.03% and 59.33%, respectively, and increased the total leaf area by 43.98%. The promotion of corn growth is related to the reduced oxidative damage under cadmium stress, manifested in decreases in the malondialdehyde content and relative conductivity and increases in antioxidant enzyme superoxide dismutase and guaiacol peroxidase activities, as well as in soluble protein and chlorophyll contents. In addition, cadmium accumulation in different parts of maize seedlings and the health risk index of cadmium were significantly reduced, reaching 48.44% (leaves), 19.15% (roots), and 20.86% (health risk index), respectively. Therefore, melatonin and silicon have a significant synergistic effect in inhibiting cadmium absorption and reducing the adverse effects of cadmium toxicity.

Keywords: cadmium stress; contaminated soil; maize; melatonin; silicon.