Thermo-Mechanical Treatment for Reducing the Wear Rate of CuCrZr Tool Electrodes during Electro-Discharge Machining

Materials (Basel). 2023 Oct 20;16(20):6787. doi: 10.3390/ma16206787.

Abstract

The research presented in this paper focused on optimising the process of unconventional plastic forming by hydrostatic extrusion (HE) with post-processing heat treatment of a copper alloy (CuCrZr) for electro-discharge machining (EDM) applications. The treatment was carried out in such a way as to obtain a material with an improved microstructure, characterised by a significant increase in hardness and strength while maintaining a high electrical conductivity, thus achieving the main goal of reducing electrode wear in the EDM process. As part of the research, a material with an ultrafine-grained structure was obtained with an average grain size of d2 = 320 nm and a much higher strength of UTS = 645 MPa compared to the material in the initial state (UTS = 413 MPa). The post-processing treatment (ageing) allowed us to obtain a material with a high electrical conductivity after the HE process, at 78% IACS. The electrodes made of CuCrZr subjected to HE had a reduced electrical discharge wear in relation to electrodes made of the initial material. The best results were obtained for electrodes made of the material subjected to a five-stage HE process combined with ageing at 480 °C for 1 h. The electrical discharge wear in these electrodes was reduced by more than 50% compared to electrodes made of non-deformed copper.

Keywords: electrical discharge wear; electro-discharge machining (EDM); hydrostatic extrusion; microstructure refinement.