The Effects of Silica Fume and Superplasticizer Type on the Properties and Microstructure of Reactive Powder Concrete

Materials (Basel). 2023 Oct 13;16(20):6670. doi: 10.3390/ma16206670.

Abstract

This paper deals with the optimization of reactive powder concrete mixtures with respect to the addition of silica fume and the type of polycarboxylate superplasticizer used. First, the properties of reactive powder concrete with eight different commercial polycarboxylate superplasticizers were tested in terms of workability, specific weight, and mechanical properties. It was found that different commercially available superplasticizers had significant effects on the slump flow, specific weight, and compressive and flexural strengths. The optimal superplasticizer (BASF ACE430) was selected for further experiments in order to evaluate the influences of silica fume and superplasticizer content on the same material properties. The results showed that the silica fume and superplasticizer content had considerable effects on the mini-cone slump flow value, specific weight, flexural and compressive strengths, and microstructure. There were clearly visible trends and local minima and maxima of the measured properties. The optimal reactive powder concrete mixture had a composition of 3.5-4.0% superplasticizer and 15-25% silica fume.

Keywords: microstructure; pozzolanic reaction; reactive powder concrete; silica fume; superplasticizer; ultra-high-performance concrete.