Caffeic Acid in Spent Coffee Grounds as a Dual Inhibitor for MMP-9 and DPP-4 Enzymes

Molecules. 2023 Oct 19;28(20):7182. doi: 10.3390/molecules28207182.

Abstract

Type 2 diabetes mellitus and diabetic foot ulcers remain serious worldwide health problems. Caffeic acid is one of the natural products that has been experimentally proven to have diverse pharmacological properties. This study aimed to assess the inhibitory activity of caffeic acid and ethanolic extract of spent coffee grounds targeting DPP-4 and MMP-9 enzymes and evaluate the molecular interactions through 50-ns molecular dynamics simulations. This study also introduced our new version of PyPLIF HIPPOS, PyPLIF HIPPOS 0.2.0, which allowed us to identify protein-ligand interaction fingerprints and interaction hotspots resulting from molecular dynamics simulations. Our findings revealed that caffeic acid inhibited the DPP-4 and MMP-9 activity with an IC50 of 158.19 ± 11.30 µM and 88.99 ± 3.35 µM while ethanolic extract of spent coffee grounds exhibited an IC50 of 227.87 ± 23.80 µg/100 µL and 81.24 ± 6.46 µg/100 µL, respectively. Molecular dynamics simulations showed that caffeic acid interacted in the plausible allosteric sites of DPP-4 and in the active site of MMP-9. PyPLIF HIPPOS 0.2.0 identified amino acid residues interacting more than 10% throughout the simulation, which were Lys463 and Trp62 in the plausible allosteric site of DPP-4 and His226 in the active site of MMP-9.

Keywords: PyPLIF HIPPOS 0.2.0; caffeic acid; diabetic foot ulcers; molecular dynamics simulations; type 2 diabetes mellitus.

MeSH terms

  • Coffee* / chemistry
  • Diabetes Mellitus, Type 2*
  • Ethanol
  • Humans
  • Matrix Metalloproteinase 9
  • Plant Extracts / pharmacology

Substances

  • Coffee
  • caffeic acid
  • Matrix Metalloproteinase 9
  • Ethanol
  • Plant Extracts