Synthesis, Antimicrobial and Antibiofilm Activities, and Molecular Docking Investigations of 2-(1 H-Indol-3-yl)-1 H-benzo[ d]imidazole Derivatives

Molecules. 2023 Oct 14;28(20):7095. doi: 10.3390/molecules28207095.

Abstract

The treatment of many bacterial and fungal infections remains a problem due to increasing antibiotic resistance and biofilm formation by pathogens. In the present article, a methodology for the chemoselective synthesis of 2-(1H-indol-3-yl)-1H-benzo[d]imidazole derivatives is presented. We report on the antimicrobial activity of synthesized 2-(1H-indol-3-yl)-1H-benzo[d]imidazoles with significant activity against Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 43300 (MRSA), Mycobacterium smegmatis (mc(2)155/ATCC 700084), and Candida albicans ATCC 10231. High activity against staphylococci was shown by indolylbenzo[d]imidazoles 3ao and 3aq (minimum inhibitory concentration (MIC) < 1 µg/mL) and 3aa and 3ad (MIC 3.9-7.8 µg/mL). A low MIC was demonstrated by 2-(1H-indol-3-yl)-1-methyl-1H-benzo[d]imidazole (3ag) against M. smegmatis and against C. albicans (3.9 µg/mL and 3.9 µg/mL, respectively). 2-(5-Bromo-1H-indol-3-yl)-6,7-dimethyl-1H-benzo[d]imidazole (3aq) showed a low MIC of 3.9 µg/mL against C. albicans. Compounds 3aa, 3ad, 3ao, and 3aq exhibited excellent antibiofilm activity, inhibiting biofilm formation and killing cells in mature biofilms. Molecular docking analysis identified three potential interaction models for the investigated compounds, implicating (p)ppGpp synthetases/hydrolases, FtsZ proteins, or pyruvate kinases in their antibacterial action mechanism.

Keywords: antibacterial activity; azaheterocycle; indole; molecular docking; resistance.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Anti-Infective Agents* / pharmacology
  • Antifungal Agents / pharmacology
  • Biofilms
  • Candida albicans
  • Imidazoles / pharmacology
  • Microbial Sensitivity Tests
  • Molecular Docking Simulation
  • Nitroimidazoles*
  • Structure-Activity Relationship

Substances

  • imidazole
  • Anti-Bacterial Agents
  • Anti-Infective Agents
  • Antifungal Agents
  • Imidazoles
  • Nitroimidazoles