Combining Mass Cytometry Data by CyTOFmerge Reveals Additional Cell Phenotypes in the Heterogeneous Ovarian Cancer Tumor Microenvironment: A Pilot Study

Cancers (Basel). 2023 Oct 23;15(20):5106. doi: 10.3390/cancers15205106.

Abstract

The prognosis of high-grade serous ovarian carcinoma (HGSOC) is poor, and treatment selection is challenging. A heterogeneous tumor microenvironment (TME) characterizes HGSOC and influences tumor growth, progression, and therapy response. Better characterization with multidimensional approaches for simultaneous identification and categorization of the various cell populations is needed to map the TME complexity. While mass cytometry allows the simultaneous detection of around 40 proteins, the CyTOFmerge MATLAB algorithm integrates data sets and extends the phenotyping. This pilot study explored the potential of combining two datasets for improved TME phenotyping by profiling single-cell suspensions from ten chemo-naïve HGSOC tumors by mass cytometry. A 35-marker pan-tumor dataset and a 34-marker pan-immune dataset were analyzed separately and combined with the CyTOFmerge, merging 18 shared markers. While the merged analysis confirmed heterogeneity across patients, it also identified a main tumor cell subset, additionally to the nine identified by the pan-tumor panel. Furthermore, the expression of traditional immune cell markers on tumor and stromal cells was revealed, as were marker combinations that have rarely been examined on individual cells. This study demonstrates the potential of merging mass cytometry data to generate new hypotheses on tumor biology and predictive biomarker research in HGSOC that could improve treatment effectiveness.

Keywords: heterogeneity; high-grade serous ovarian cancer (HGSOC); immunophenotyping; mass cytometry; merging algorithm; tumor microenvironment (TME).