R-Loops in Genome Instability and Cancer

Cancers (Basel). 2023 Oct 14;15(20):4986. doi: 10.3390/cancers15204986.

Abstract

R-loops are unique, three-stranded nucleic acid structures that primarily form when an RNA molecule displaces one DNA strand and anneals to the complementary DNA strand in a double-stranded DNA molecule. R-loop formation can occur during natural processes, such as transcription, in which the nascent RNA molecule remains hybridized with the template DNA strand, while the non-template DNA strand is displaced. However, R-loops can also arise due to many non-natural processes, including DNA damage, dysregulation of RNA degradation pathways, and defects in RNA processing. Despite their prevalence throughout the whole genome, R-loops are predominantly found in actively transcribed gene regions, enabling R-loops to serve seemingly controversial roles. On one hand, the pathological accumulation of R-loops contributes to genome instability, a hallmark of cancer development that plays a role in tumorigenesis, cancer progression, and therapeutic resistance. On the other hand, R-loops play critical roles in regulating essential processes, such as gene expression, chromatin organization, class-switch recombination, mitochondrial DNA replication, and DNA repair. In this review, we summarize discoveries related to the formation, suppression, and removal of R-loops and their influence on genome instability, DNA repair, and oncogenic events. We have also discussed therapeutical opportunities by targeting pathological R-loops.

Keywords: DNA repair; R-loops; RNA–DNA hybrid; cancer; double-strand breaks; genome instability; transcription-coupled homologous recombination; transcription–replication conflicts.

Publication types

  • Review