Investigation of Hydrothermal Performance in Micro-Channel Heat Sink with Periodic Rectangular Fins

Micromachines (Basel). 2023 Sep 23;14(10):1818. doi: 10.3390/mi14101818.

Abstract

The micro-channel heat sink (MCHS) is an excellent choice due to its exceptional cooling capabilities, surpassing those of its competitors. In this research paper, a computational fluid dynamics analysis was performed to investigate the laminar flow and heat transfer characteristics of five different configurations of a variable geometry rectangular fin. The study utilized a water-cooled smooth MCHS as the basis. The results indicate that the micro-channel heat sink with a variable geometry rectangular fin has better heat dissipation capacity than a straight-type micro-channel heat sink, but at the same time, it has larger pressure loss. Based on the analysis of various rectangular fin shapes and Reynolds numbers in this study, the micro-channel heat sink with rectangular fins exhibits Nusselt numbers and friction factors that are 1.40-2.02 and 2.64-4.33 times higher, respectively, compared to the smooth heat sink. This significant improvement in performance results in performance evaluation criteria ranging from 1.23-1.95. Further, it is found that at a relatively small Reynolds number, the micro-channel heat sink with a variable geometry rectangular fin has obvious advantages in terms of overall cooling performance. Meanwhile, this advantage will decrease when the Reynolds number is relatively large.

Keywords: computational fluid dynamics; laminar flow; micro-channel heat sink (MCHS).

Grants and funding

This research was funded by the Project of the Hubei Provincial Department of Science and Technology (Grant No. 2022CFB957), the Project of Hubei Engineering University of Teaching Research (Grant No. 202233), Ministry of Education University-Industry Cooperation Collaborative Education Project (Grant No. 220903584161245), College Students’ innovation and entrepreneurship training program (Grant No. DC2023024, No. DC2023025).