Mapping Quantitative Observer Metamerism of Displays

J Imaging. 2023 Oct 19;9(10):227. doi: 10.3390/jimaging9100227.

Abstract

Observer metamerism (OM) is the name given to the variability between the color matches that individual observers consider accurate. The standard color imaging approach, which uses color-matching functions of a single representative observer, does not accurately represent every individual observer's perceptual properties. This paper investigates OM in color displays and proposes a quantitative assessment of the OM distribution across the chromaticity diagram. An OM metric is calculated from a database of individual LMS cone fundamentals and the spectral power distributions of the display's primaries. Additionally, a visualization method is suggested to map the distribution of OM across the display's color gamut. Through numerical assessment of OM using two distinct publicly available sets of individual observers' functions, the influence of the selected dataset on the intensity and distribution of OM has been underscored. The case study of digital cinema has been investigated, specifically the transition from xenon-arc to laser projectors. The resulting heatmaps represent the "topography" of OM for both types of projectors. The paper also presents color difference values, showing that achromatic highlights could be particularly prone to disagreements between observers in laser-based cinema theaters. Overall, this study provides valuable resources for display manufacturers and researchers, offering insights into observer metamerism and facilitating the development of improved display technologies.

Keywords: color reproduction; display technology; observer variability; visual perception.