High-Rate One-Dimensional α-MnO2 Anode for Lithium-Ion Batteries: Impact of Polymorphic and Crystallographic Features on Lithium Storage

Nanomaterials (Basel). 2023 Oct 23;13(20):2808. doi: 10.3390/nano13202808.

Abstract

Manganese dioxide (MnO2) exists in a variety of polymorphs and crystallographic structures. The electrochemical performance of Li storage can vary depending on the polymorph and the morphology. In this study, we present a new approach to fabricate polymorph- and aspect-ratio-controlled α-MnO2 nanorods. First, δ-MnO2 nanoparticles were synthesized using a solution plasma process assisted by three types of sugars (sucrose, glucose, and fructose) as reducing promoters; this revealed different morphologies depending on the nucleation rate and reaction time from the molecular structure of the sugars. Based on the morphology of δ-MnO2, the polymorphic-transformed three types of α-MnO2 nanorods showed different aspect ratios (c/a), which highly affected the transport of Li ions. Among them, a relatively small aspect ratio (c/a = 5.1) and wide width of α-MnO2-S nanorods (sucrose-assisted) induced facile Li-ion transport in the interior of the particles through an increased Li-ion pathway. Consequently, α-MnO2-S exhibited superior battery performance with a high-rate capability of 673 mAh g-1 at 2 A g-1, and it delivered a high reversible capacity of 1169 mAh g-1 at 0.5 A g-1 after 200 cycles. Our findings demonstrated that polymorphs and crystallographic properties are crucial factors in the electrode design of high-performance Li-ion batteries.

Keywords: Li-ion batteries; Li-ion transport; anode; aspect ratio; α-MnO2.