Engineering Cell-Derived Nanovesicles for Targeted Immunomodulation

Nanomaterials (Basel). 2023 Oct 12;13(20):2751. doi: 10.3390/nano13202751.

Abstract

Extracellular vesicles (EVs) show promise for targeted drug delivery but face production challenges with low yields. Cell-derived nanovesicles (CDNVs) made by reconstituting cell membranes could serve as EV substitutes. In this study, CDNVs were generated from mesenchymal stem cells by extrusion. Their proteomic composition, in vitro and in vivo toxicity, and capacity for loading RNA or proteins were assessed. Compared with EVs, CDNVs were produced at higher yields, were comprised of a broader range of proteins, and showed no detrimental effects on cell proliferation, DNA damage, or nitric oxide production in vitro or on developmental toxicity in vivo. CDNVs could be efficiently loaded with RNA and engineered to modify surface proteins. The feasibility of generating immunomodulatory CDNVs was demonstrated by preparing CDNVs with enhanced surface expression of PD1, which could bind to PD-L1 expressing tumor cells, enhance NK and T cell degranulation, and increase immune-mediated tumor cell death. These findings demonstrate the adaptability and therapeutic promise of CDNVs as promising substitutes for natural EVs that can be engineered to enhance immunomodulation.

Keywords: RNA therapeutics; biological nanoparticles; cell-derived nanovesicles; immunotherapy; targeted delivery.